Les Sept Laux 22 janvier 2006

Automates de sable

Enrico FORMENTI, Benoît MASSON

Introduction

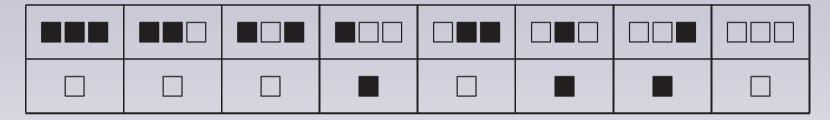
- > Nouveau modèle, "croisement" entre systèmes existants :
 - automates cellulaires ;
 - > tas de sable.
- > On s'intéresse à la dynamique de ce système dynamique discret.
 - Comportement défini par des règles simples, locales.
 - Quel sera le comportement global à long terme ?
 - ★ Conservation des grains
 - * Stabilisation
 - * Nilpotence

Introduction

- 1. Premiers pas
- 2. Automates de sable
- 3. Quelques résultats
 - Conclusion

Automates cellulaires

- ightharpoonup Ensemble d'états $S = \{\Box, \blacksquare\}$.
- ightharpoonup Règle locale $\delta: S^{2r+1^d} \mapsto S$, rayon r dimension d.
 - ightharpoonup Cas de base d=r=1:



ightharpoonup Appliqué à une configuration de $S^{\mathbb{Z}^d}$.

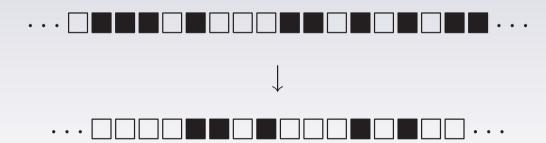
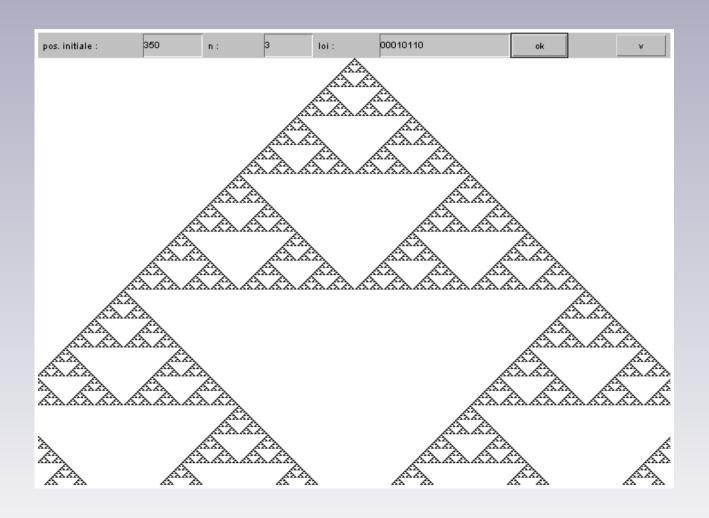


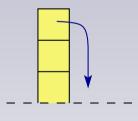
Diagramme espace-temps



Source: http://perso.wanadoo.fr/jpq/fractales/autocell/

Tas de sable

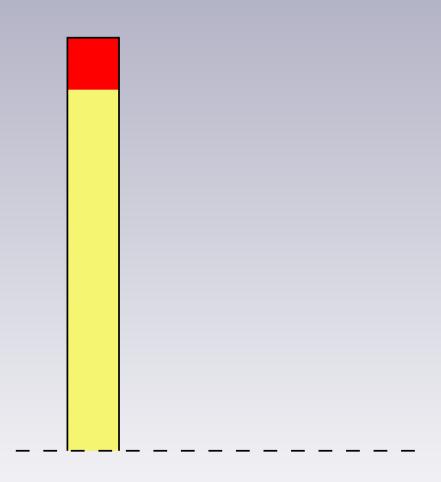
- ightharpoonup Associé à un entier $n \in \mathbb{N}$ (nombre de grains).
- \triangleright Etats possibles : $\{0,\ldots,n\}$.
- > Règles locales très simples.

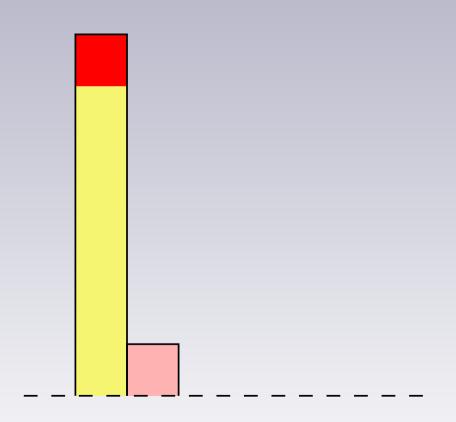


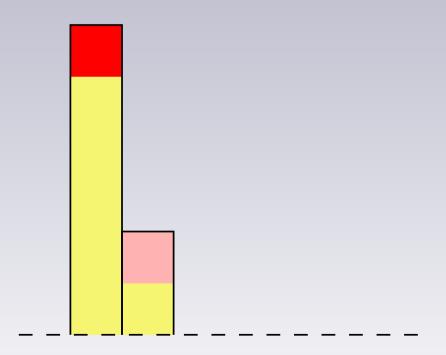
Règle verticale

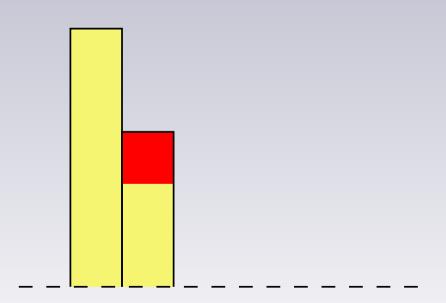
Règle horizontale

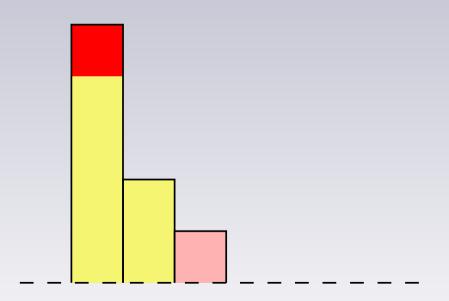
- > Deux modèles utilisés principalement :
 - ➤ SPM (Sand Pile Model), règle verticale;
 - → IPM (*Ice Pile Model*), règles verticale et horizontale.

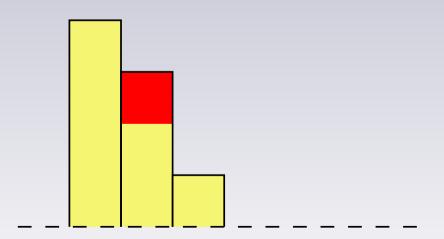


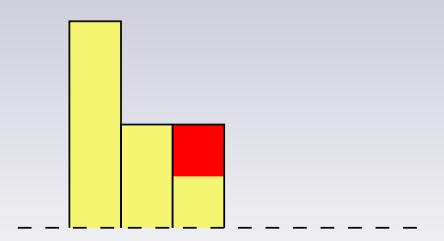


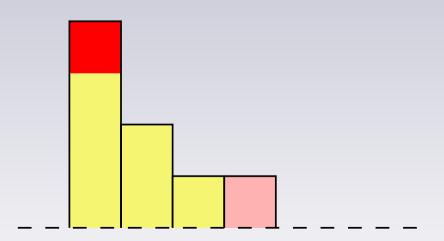




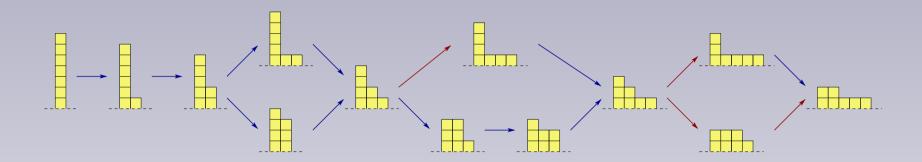








Evolution de IPM



➤ Treillis ⇒ unicité du point fixe.

Récapitulatif

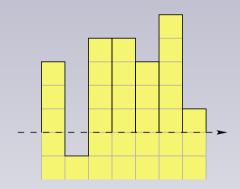
Automates cellulaires	Tas de sable
configurations infinies	configurations finies
nombre d'états borné	nombre d'états non borné
évolution synchrone	évolution asynchrone
règle locale	règle locale

Introduction

- 1. Premiers pas
- 2. Automates de sable
- 3. Quelques résultats
 - Conclusion

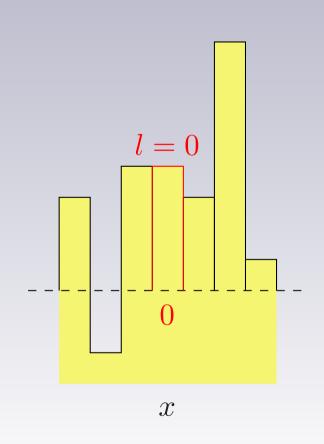
Configurations

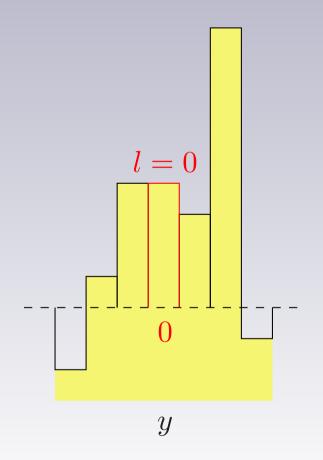
- \succ En dimension 1, une configuration est un élément de $\mathbb{Z}^{\mathbb{Z}}$.
- > A tout point est associé un entier indiquant le nombre de grains.



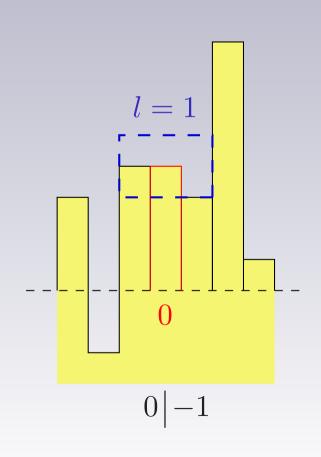
- ightharpoonup Ajout de sources et puits pour plus de généralité et pour des raisons de compacité : $\left(\mathbb{Z}\cup\{-\infty,+\infty\}\right)^{\mathbb{Z}}$
- Besoin d'une topologie pour pouvoir étudier la dynamique.
 - → Mise en place d'une distance.

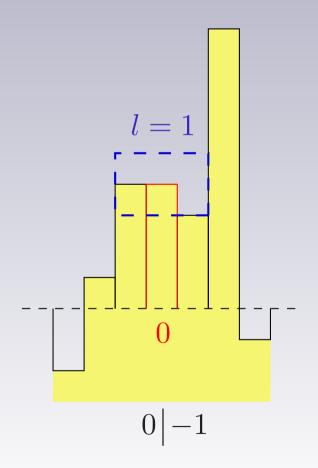
$$ightharpoonup d(x,y)=2^{-l}$$
 , l défini par :



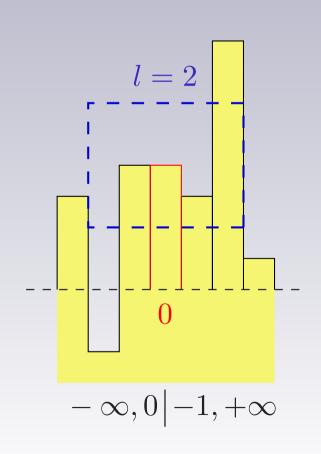


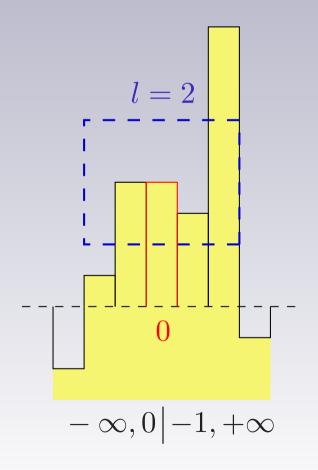
$$ightharpoonup d(x,y)=2^{-l}$$
 , l défini par :





$$ightharpoonup d(x,y)=2^{-l}$$
 , l défini par :

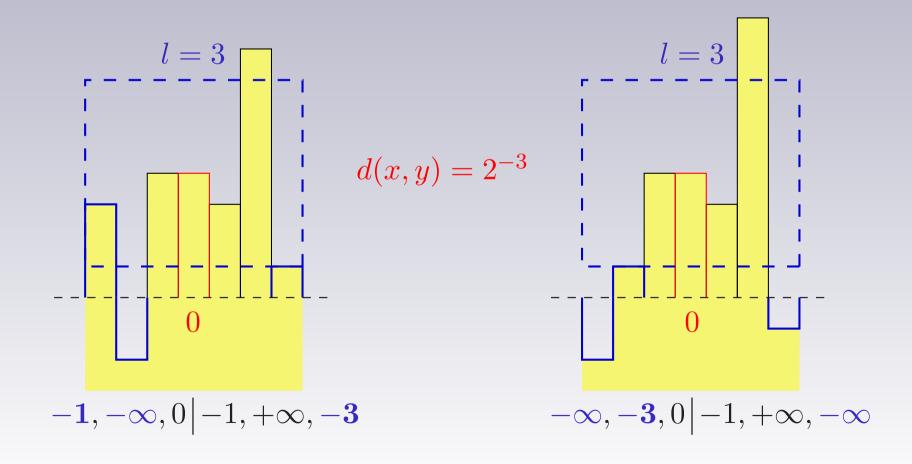




Page 11

Automates de sable

$$ightharpoonup d(x,y)=2^{-l}$$
 , l défini par :



Topologie

Proposition 1

L'espace des configurations & n'est pas compact.

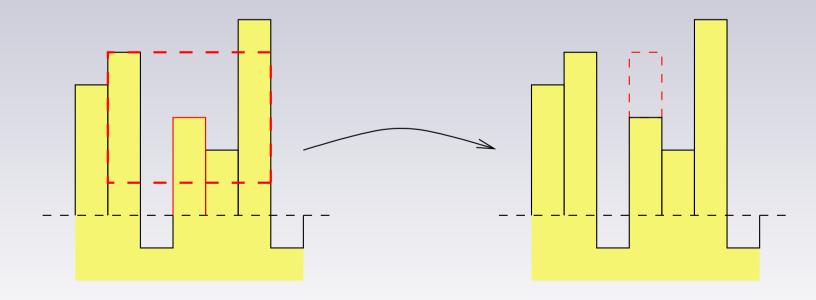
Théorème 2

C est localement compact.

ightharpoonup Plus précisément, $\mathfrak{C}_x=\{c\in\mathfrak{C}|c_0=x\}$ est compact.

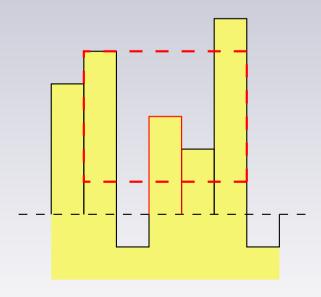
Automates de sable

- \rightarrow $A = \langle r, \lambda \rangle$, r est le rayon et λ la règle locale.
- ➤ La règle locale retourne la variation d'une colonne en fonction du tableau des différences de hauteur avec les voisins.



Règle locale

- \rightarrow "Locale" à cause du rayon r :
 - → nombre de voisins pris en compte fixe ;
 - ⇒ différences bornées, considérées comme infinies si trop grandes.



La règle est appliquée sur le voisinage $(+2, -\infty, -1, +\infty)$.

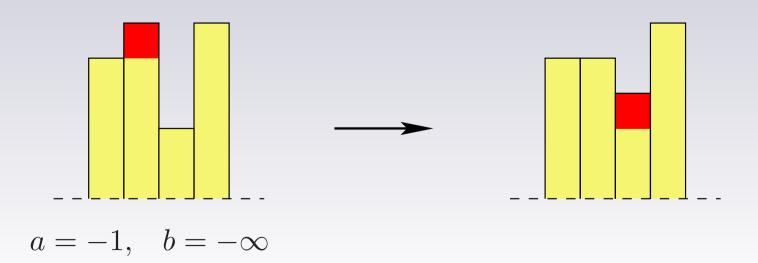
Règle globale

 \succ La règle locale est appliquée de manière synchrone, alors le comportement de l'automate est déterminé par sa règle globale $f: \mathfrak{C} \mapsto \mathfrak{C}$.

➤ La règle globale est continue dans l'espace métrique C.

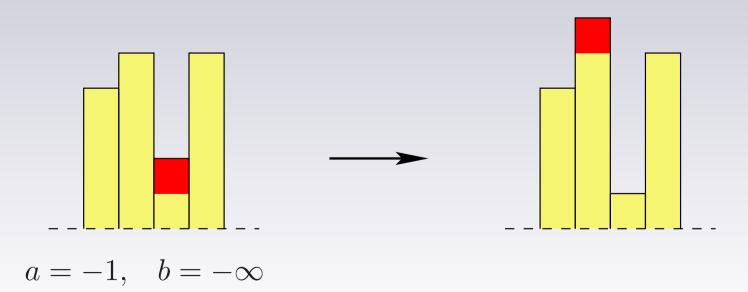
Simulation de SPM

$$r=1,\quad \lambda(a,b)=\left\{ \begin{array}{ll} +1 & \text{ si } a=+\infty \text{ et } b\neq -\infty \\ -1 & \text{ si } a\neq +\infty \text{ et } b=-\infty \\ 0 & \text{ sinon.} \end{array} \right.$$

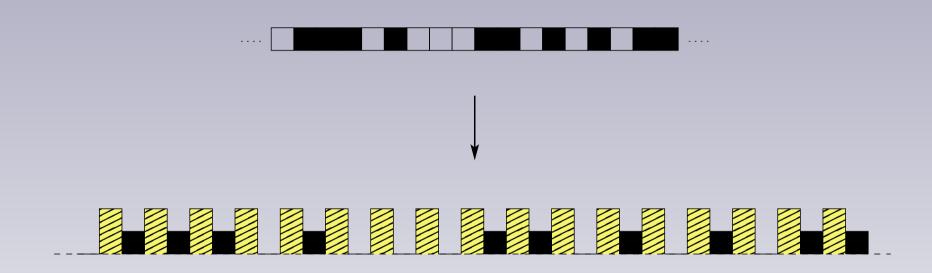


SPM^r (inverse à droite)

$$r=1,\quad \lambda(a,b)=\left\{ \begin{array}{ll} -1 & \text{ si } a=+\infty \text{ et } b\neq -\infty \\ +1 & \text{ si } a\neq +\infty \text{ et } b=-\infty \\ 0 & \text{ sinon.} \end{array} \right.$$

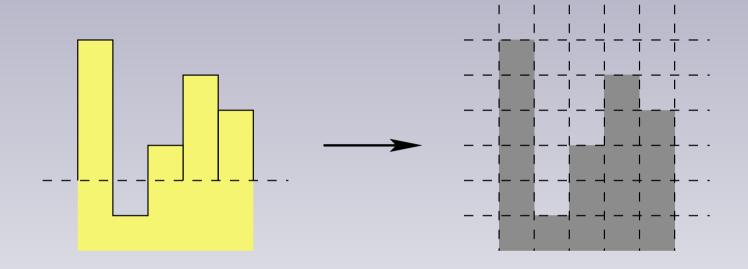


Simulation d'un AC par un AS



Rayon $r \rightarrow 2r$.

Simulation d'un AS par un AC



- Rayon $r \to 2r$.
- Dimension $d \rightarrow d+1$.

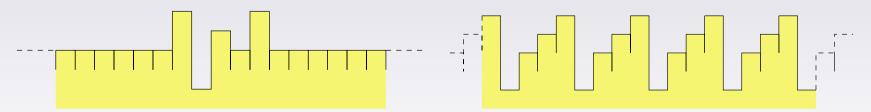
Introduction

- 1. Premiers pas
- 2. Automates de sable
- 3. Quelques résultats

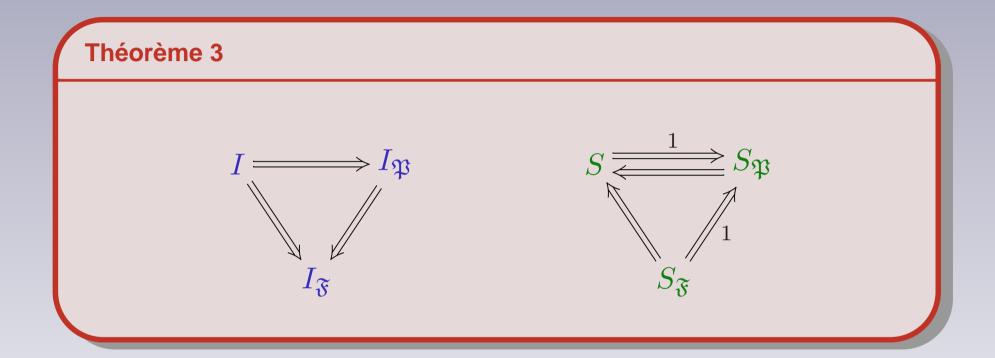
Conclusion

Propriétés ensemblistes

- Etude de la surjectivité et de l'injectivité d'un automate, *i.e.* de sa règle globale.
 - Souvent utilisé pour définir la chaoticité d'un automate.
 - ► Est-ce que ces propriétés sont décidables ?
- On recherche des relations entre injectivité et surjectivité.
 - Dans le cas général.
 - Restriction à des configurations finies et périodiques.



Résultats



La décidabilité reste ouverte.

Conservation des grains

Définition 1 (FGC)

Un automate conserve les gains sur les finis ssi pour toute configuration x

finie,
$$\sum_{i \in \mathbb{Z}^d} f(x)_i = \sum_{i \in \mathbb{Z}^d} x_i$$
.

Définition 2 (PGC)

Un automate conserve les gains sur les périodiques ssi pour toute configu-

ration
$$x$$
 périodique de période p ,
$$\sum_{i=(0,\dots,0)}^p f(x)_i = \sum_{i=(0,\dots,0)}^p x_i.$$

Résultats

Proposition 4

Les définitions FGC et PGC sont équivalentes.

Théorème 5

La conservation des grains est décidable.

ightharpoonup En dimension 1, rayon 1, $\mathcal{A}=\langle 1,\lambda \rangle$ est GC ssi pour tous $a,b,c\in\mathbb{Z}$,

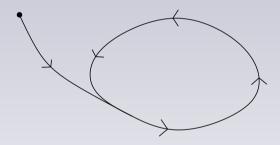
$$\lambda(a, b, c) = \lambda(0, 0, b) - \lambda(0, 0, a) + \lambda(0, b, c) - \lambda(0, a, b) .$$

Périodicité ultime

Problème ULT

Instance: Un automate de sable A.

Question: A va-t-il toujours atteindre une configuration temporellement périodique, à partir d'une configuration finie (ou périodique) quelconque?

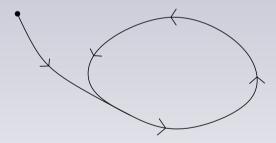


Périodicité ultime

Problème ULT

Instance: Un automate de sable A.

Question: A va-t-il toujours atteindre une configuration temporellement périodique, à partir d'une configuration finie (ou périodique) quelconque?



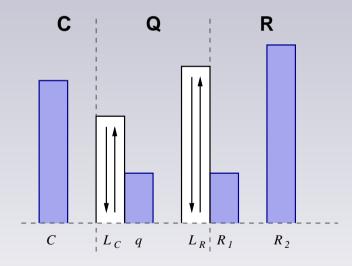
Théorème 6

ULT est indécidable.

> Réduction à partir d'un machine à deux compteurs, initialisée à 0.

$$\rightarrow \mathcal{M} = \langle Q, q_0, q_f, \delta \rangle.$$

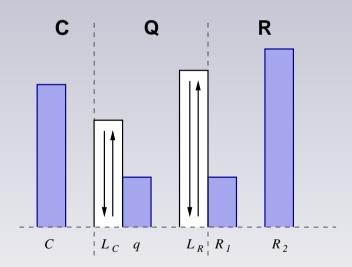
> Principe de la simulation :



> Réduction à partir d'un machine à deux compteurs, initialisée à 0.

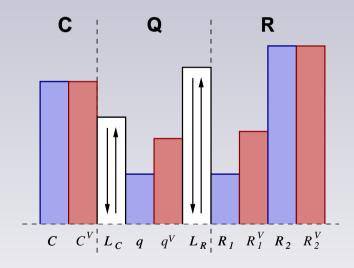
$$\rightarrow \mathcal{M} = \langle Q, q_0, q_f, \delta \rangle.$$

> Principe de la simulation :



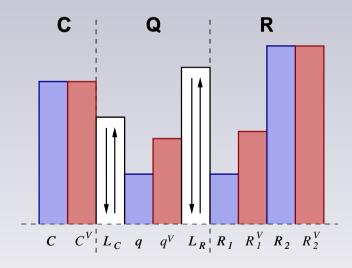
1. Simulation;

- > Réduction à partir d'un machine à deux compteurs, initialisée à 0.
 - $\rightarrow \mathcal{M} = \langle Q, q_0, q_f, \delta \rangle.$
- > Principe de la simulation :



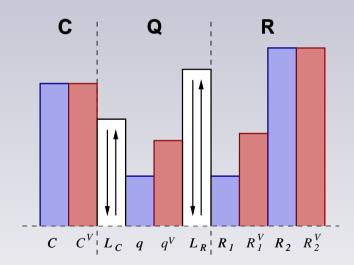
- 1. Simulation;
- 2. Vérification;

- > Réduction à partir d'un machine à deux compteurs, initialisée à 0.
 - $\rightarrow \mathcal{M} = \langle Q, q_0, q_f, \delta \rangle.$
- > Principe de la simulation :



- 1. Simulation;
- 2. Vérification;
- 3. Comparaison.

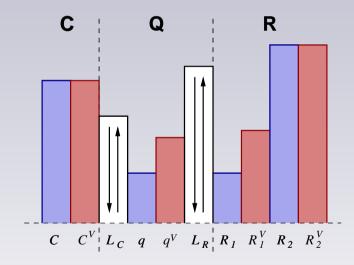
- > Réduction à partir d'un machine à deux compteurs, initialisée à 0.
 - $\rightarrow \mathcal{M} = \langle Q, q_0, q_f, \delta \rangle.$
- > Principe de la simulation :



- 1. Simulation;
- 2. Vérification;
- 3. Comparaison.

Les configurations malformées arrêtent d'évoluer.

- > Réduction à partir d'un machine à deux compteurs, initialisée à 0.
 - $\rightarrow \mathcal{M} = \langle Q, q_0, q_f, \delta \rangle.$
- > Principe de la simulation :



- 1. Simulation;
- 2. Vérification;
- 3. Comparaison.

Les configurations malformées arrêtent d'évoluer.

 \longrightarrow \mathcal{M} termine \iff \mathcal{A} est ultimement périodique.

Conclusion

- Modèle simple dans sa description, mais comportement très complexe.
- Beaucoup de travail reste à faire !
- > Autre voie : reconnaissance de langages sur alphabet infini.
 - ightharpoonup Définir un langage sur \mathbb{Z} .
 - → Choisir un mode de reconnaissance.
 - Classer les automates selon les langages reconnus.

> etc.